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Abstract~An un-supported cracked plate repaired with a reinforcement bonded on one side may
experience a considerable out-of-plane bending, resulting mainly from the load-path eccentricity. A
geometrically linear analysis is presented in this paper for the crack extension force after the
application of a one-sided repair. It is found that although the stress intensity factor K for a one­
sided repair is higher than in two-sided repairs where there is no bending present, the key feature is
retained that K does not increase indefinitely with increasing crack length, but instead approaches
asymptotically a finite upper-bound corresponding to the solution for a semi-infinite crack. An
analytical expression is derived for this upper bound, which provides a conservative estimate suitable
for design purposes and parametric studies. This analytical solution is shown to agree well with a
fully three-dimensional finite element analysis. Strategies to minimize the detrimental effect of out­
of-plane bending are briefly di:>cussed. © 1998 Elsevier Science Ltd.

NOMENCLATURE

a crack length
D bending stiffness ( = EI'j 12)
E Young's modulus
G strain energy release rate
I moment of inertia per unit width ( = I'j 12)
k spring constant for two sided repair
K ..~ upper pound stress intensity factor for two-sided repair
L width of a finite plate
N direct force in plate
M bending moment
R ratio between minimum and maximum stresses in a plate under combined tension and bending
S stiffness ratio (=E~tR!E~tl')

I thickness
UE elastic strain energy
x, y in-plane coordinate
z through-thickness coordinate
{3 shear stress transfer parameter (= J (J-lA!tA)( IjE~lp + IjE~IR))'
{3, shear stress transfer parameter for single strap joint ( = 2(3)
J-lA adhesive shear modulus
v Poisson's ratio
w bending correction factor for one-sided repair
(f'~ remote applied stress
(fo perspective membrane stress across crack front
(fb perspective bending stress across crack front
IT potential energy

Subscripts
A adhesive layer
P cracked plate
R reinforcement
rrns root-mean-square value
Of) parameters pertaining to semi-infinite crack

Superscripts
* parameters pertaining to one-sided repair

Young's modulus under plane strain conditions
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I. INTRODUCTION

The last two decades have witnessed significant advances in bonded repair technology as
an efficient and cost-effective means of repairing cracks, especially in aircraft structures
(Ratwani, 1979; Rose, 1981 ; Baker and Jones, 1988; Baker, 1993; Rose et at., 1995). From
a geometrical consideration, bonded repairs as illustrated in Fig. 1 fall into two categories:
two-sided (symmetric) and one-sided (asymmetric). In the former case two identical
reinforcements are bonded on the two surfaces of a cracked plate. This symmetric arrange­
ment ensures that there is no out-of-plane bending over the repaired region, see Fig.
1(b), provided the cracked plate is subjected to extensional loads only. From a practical
application viewpoint, the most important feature of (symmetric) bonded repairs is prob­
ably the asymptotic behaviour of the crack extension force as crack length increases. This
means that the stress intensity factor after the repair approaches asymptotically, but never
exceeds an upper bound, which depends on the geometry and material properties of a
particular repair. The reason for this asymptotic behaviour is essentially due to that the
repair provides a crack-bridging mechanism, such that the applied load can be fully trans­
mitted across the crack with only a finite relative displacement between the crack faces, and
this in turn ensures that the strain energy release rate for a semi-infinite crack is finite.

In actual repairs, however, one-sided repair is often adopted in which composite
patches are applied to only one side of the panel (Baker and Jones, 1988; Baker, 1993;
Rose et at., 1995). This is because most often, only one face of a structure to be repaired is
accessible and sometimes only one side of a structure is allowed to be patched, e.g. aircraft
fuselage or wing sections. Provided the structure to be repaired is well supported against
out-of-plane deflection, the analytical procedure developed by Rose (1981, 1987, 1988) has
been shown to agree well with finite element results. However, in the case of unsupported
one-sided repair, the out-of-plane bending caused by the shift of the neutral plane away
from that of the plate may considerably lower the repair efficiency, as recognized by a
number of authors in the literature (Ratwani, 1979; Jones, 1983; Rose, 1988; Arendt and
Sun, 1994). In this regard, a recent finite element analysis by Arendt and Sun (1994) cast
some serious doubt over the validity of the existing bonded repair methodology, as their
results appeared to suggest that the stress intensity factor for a one-sided repair would
increase indefinitely with increase crack length. Furthermore, this alarming result seems to
agree with an earlier work by Ratwani (1979), who contended that the influence of bending
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Fig. 1. Repair configurations and coordinates: (a) plan view; (b) cross-section along centre line
(x = 0) with no bending deflection allowed. representing two-sided repair; (c) cross-section of a

one-sided repair along the centre line; and (d) cross-section at x -... OCJ for a one-sided repair.
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(increase in stress intensity factor) in a structure will increase indefinitely as the crack length
mcreases.

The aim of this paper is to present a theoretical and numerical analysis of one-sided
repairs, taking into account the out-of-plane bending effect. For the sake of simplicity, only
a geometrically linear analysis is considered in this paper; the effect of geometrically non­
linear deformation will be the: subject of a separate paper. To quantify the effect of out-of­
plane bending, an extensive finite element analysis has been carried out to verify the
analytical solution. The most important finding is that the stress intensity factor of a one­
sided repaired crack does asymptote to, but never exceeds, a limiting value, and that the
analytical solution provides a conservative estimate for this limiting value.

2. REVIEW OF PREVIOUS WORK

For an isotropic centre-cracked panel of thickness 2tp and Young's modulus of Ep , the
asymptotic stress intensity factor after repair by a quasi-isotropic patch of thickness t R and
Young's modulus of ER can be expressed as (Rose, 1982)

(1)

where the subscript 00 refers to the stress intensity factor of a repaired semi-infinite crack,
0"0 denotes the stress that would exist in an uncracked plate after the application of a patch,
and k represents a spring constant given by eqn (3). For the case of strip-like patch as
indicated in Fig. 1(a),

1 00

O"o=l+SO" , (2)

where S = E~tR/E~tp. Here E~ and E~ represent, respectively, the Young's modulus of the
plate and reinforcement und,~r plane strain condition. The spring constant k in eqn (1) is
given by (Wang and Rose, 1997a):

k = {3S
(l +S)(1- v~)

where {3-1 is a shear stress transfer length in a representative bonded joint,

[
llA ( 1 1 )J112{3= - -+-
tA E~tp E~tR

(3)

(4)

Here llA and tA represent the shear modulus and the thickness of the adhesive layer. It
should be pointed out that the spring constant given by eqn (3) has been derived by treating
the represented bonded joint as under plane strain condition (Wang and Rose, 1997a),
hence differs from that derived by Rose (1988), where the represented joint was assumed
to be in plane stress.

In the case of one-sided repairs, Ratwani (1979) provided a bending correction factor
for one-sided repairs based on the following considerations: (i) the stresses in the cracked
plate and the reinforcement far away from the crack were assumed to be equal; (ii) the
out-of-plane bending in a one-sided repair was entirely due to the presence of a crack.
Postulating a relation

K* = (1 +BC)Kp , (5)

where K p refers to the stress intensity factor for a symmetric repair, and K* the stress
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intensity factor for a one-sided repair, the correction term BC is given by Ratwani (1979)
as

(6)

where K represents the stress intensity factor of the unrepaired crack, Ymax signifies the
distance of the extreme fibres of the cracked plate from the neutral axis of the cracked plate
(i.e. Ymax = tp j2), and lis the moment of inertia of the plate, which is equal to Lt~/l2. Here,
L denotes the width of the panel. A feature of this analysis as indicated by eqn (6) is that
the bending correction factor increases linearly with crack length a. Furthermore, the result
also predicted that the bending effect is negligible for crack lengths much smaller than panel
width. Jones (1983, 1988) in a subsequent study adopted Ratwani's definition of BC, but
noted from his numerical results that the influence of bending did not increase indefinitely,
contrary to that suggested by Ratwani (1979). The reason for these conflicting results was
not clarified, but it is believed by the present authors that Jones might have taken a different,
inconsistent interpretation of the moment of inertia I from the original Ratwani's analysis.
Nevertheless, the limJited finite element results obtained by Jones (1983) supported the view
that the stress intensity factor for one-sided repairs should remain bounded.

Of the two key assumptions made by Ratwani (1979), it should be noted first that the
deformation in the plate and the reinforcement far away from the crack will be incompatible
if the stresses are assumed to be the same, unless the extensional moduli of both the patch
and the plate happen to be the same, which is not usually the case for composite bonded
repairs to metallic (aluminium) structures. Secondly, probably more importantly, the out­
of-plane bending in a one-sided repair, as will be demonstrated later, is induced by the shift
of the neutral plane away from the mid-surface of the plate, rather by the loss of load­
bearing cross-section due to the crack, as conjectured by Ratwani.

Rose (1988) correctly identified the existence of an asymptotic upper bound and the
length scales induced by secondary bending. However, a constant term was overlooked in
the governing equation for out-of-plane deflection. This oversight is corrected in the present
work, within the framework of a geometrically linear analysis. It is thus clear from the
previous discussion that the issue of one-sided repair remains unresolved; reports in the
literature are often conflicting and contradictory. This has greatly hampered the design and
analysis of one-sided bonded repairs, a case frequently encountered in repairing thin skin
components, such as aircraft structures.

3. PROBLEM FORMULATION

Referring to Fig. I, the problem being considered is that of a centre-cracked plate,
with crack length 2a, repaired by a bonded reinforcement in the form of a strip of height
2B, running across the full width 2L. A remote uniform tensile stress (JOO is applied to the
plate normal to the crack. The problem is to determine the stress intensity factor K in the
repaired plate, as a fllnction of crack length 2a and of the relevant parameters pertaining
to the patched system, notably the Young's modulus E and thickness t. Here, and in the
following subscripts, P, R, A will be used to distinguish properties pertaining, respectively,
to the plate, the reinforcement and the adhesive layer.

Due to the bending moment present in the repaired region, the stress, strain and
displacement vary through the thickness of the plate, and consequently the stress intensity
factor will also vary across the crack front. Within the framework of the shear deformation
theory by Reissner (1947) for plates, the crack tip singular field for a cracked plate subjected
to membrane and bending stresses has the same functional form as a plate under extensional
load only [see Hartranft and Sih (1968) ; Sih (1971)1, with the stress intensity factor varying
linearly through the plate thickness. This means that the y-stress at position r ahead the
crack tip can be expressed as :
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(7a)

Similarly the near-tip crack opening displacement follows the standard asymptotic relation:

- + 4K(z) Ja-x
uy(x-->a ,y=O ,z)=---e ~' (7b)

where K(z) represents the stress intensity factor as a function of the through-thickness
coordinate z.

Assuming a linear variation for K(z) , in accordance with shear deformation plate
theories,

(8)

where K rnean and K b denote, respectively, the membrane and bending stress intensity factors.
The total energy release rate, fpC, across the thickness for self-similar crack growth is the
energy released during a virtual crack extension of ba, which in turn is equal to the work
done by hypothetically imposed surface tractions:

. (WE I' 1 f'P fO O"yy(r, z)uy(b-r,z)
fpC = hm-- = Im- 2 drdz

o~o b j~O boo 2

. ftP2K2(z)f°F--r= hm --- --drdz
O~O nE b r

.0 P 0

1 J"= E P K 2 (z) dz.
p 0

(9)

Therefore, the total strain energy release rate can be expressed in terms of the root­
mean-square value of K as follows:

(10)

where K rms is given by

(11)

where subscript rms refers to root-mean-square of the stress intensity factor across the
crack front. It is noted that Krrns is not equal to the thickness average of the stress intensity
factor Krnean . Instead, for a linear distribution as in eqn (8), it follows from eqn (11) that

(12)

It is seen that the root-mean-square value is greater than the arithmetic mean. As will be
shown later, eqn (12) furnis,hes an important relationship for calculating the maximum
stress intensity factor, as Krrns can be determined from energy considerations.
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4. FINITE ELEMENT ANALYSIS

Because a one-sided bonded repair represents a complex three-dimensional, layered
system, especially with the presence of a finite size crack in one layer only, a rigorous
analytical solution would be intractable. Therefore, a finite element analysis is conducted
first. This will at least serve to clarify the question of whether the stress intensity factor for
a one-sided repaired crack remains bounded. To this end, a three-dimensional finite element
model has been developed for an isotropic, centre-cracked panel repaired with an isotropic
reinforcement using the commercial software package PAFEC (1995). To facilitate com­
parison with the earlier work of Arendt and Sun (1994), the reinforcement is assumed to
be isotropic (rather than orthotropic, as would be more appropriate for the uni-directional
fibre composite patches used in practice), and the same values that were used by Arendt
and Sun for the elastic constants and the thicknesses will be used here, as summarized in
Table I. These are n:presentative of values for an aluminium plate repaired by a boron/e­
poxy patch, using an epoxy-based structural adhesive.

The finite element mesh is shown in Fig. 2(a). In all cases to be discussed in the
following, only a quadrant of the plate was modelled. No debond between the plate and
the reinforcement is considered.

The three constituents in Fig. I, the plate, the adhesive layer and the reinforcing patch,
are assumed to deform elastically only, and are each modelled by 20-noded isoparametric
brick elements. One important issue that needs to be addressed is how to deal with a
relatively thin adhesive layer, which is typically an order of magnitude thinner than the
plate or the patch (see Table 1). To this end, the technique of reduced integration is now
well established for dealing with the problem oflarge aspect ratios for elements in modelling
thin layers. To determine K, isoparametric wedge-shaped elements have been employed
around the crack tip node, as indicated in Fig. 2(b), with the mid-point nodes shifted to
quarter-point locations to capture the characteristic crack-tip singularity. To validate the
adequacy of the FE mesh, calculations were first carried out for an unpatched plate. The
results, as depicted in Fig. 3, were found to agree within 2% with the handbook values for
this case (Murakami, 1987), for half-crack lengths ranging from 10 to 170 mm.

For the repaired plate, the results for a two-sided repair were obtained by using a
symmetry restraint on the plane z = 0, as indicated in Fig. l(b). The stress intensity factor
was determined for a large number of half-crack lengths ranging from 2 to 170 mm. These
calculations were then repeated for the case of a one-sided repair by removing the symmetry
restraint on z = O. The results are shown in Fig. 4, where the stress intensity factor for one­
sided repair was determined from the finite element results using eqn (7b). It is apparent
from Fig. 4 that the stress intensity factor for a one-sided repair significantly exceeds the
value for the corresponding two-sided repair, indicating that the secondary bending induced
by the load~path eccentricity has a significant detrimental effect on the efficiency of bonded
reinforcement. It is noted that K rrns obtained from the present three-dimensional finite
element analysis is in good agreement with those obtained by Arendt and Sun (1994), who
modelled the deformation of the cracked plate and the reinforcement using Mindlin plate
theory, with the two plates being coupled by distributed shear and tension springs rep­
resenting the adhesive layer. One important feature of the numerical results is that the stress
intensity factor in the one-sided repair case does not increase beyond a limiting value, but
increases monotonically towards an asymptotic value. The solid line shown in the figure
represents the analytical prediction of the upper bound, which will be derived in the next
section.

Table 1. Dimensions and material properties of a typical repair

Layer

Plate
Reinforcement
Adhesive

Young's modulus
(GPa)

71
207

1.89

Poisson's ratio

0.3
0.3
0.33

Thickness
(mm)

3.0
1.02
0.203

Height
(mm)

500
100
100

Width
(mm)

500
500
500
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Fig. 2. Finite element mesh for a cracked plate repaired with reinforcement: (a) plan view; and (b)
near crack tip.

The through-thickness variation of the stress intensity factor K(z) for a relatively long
crack length (l00 mm) is shown in Fig. 5, compared with the analytical prediction to be
presented later. It is seen that the stress intensity factor clearly follows a linear variation
across plate thickness, consistent with the expectation from a shear-deformation plate
theory. The solid line shown in the figure is again the theoretical prediction to be discussed
in Section 5. It is known that the stress singularity at the intersection of a crack front with
a free surface differs from the standard inverse-square-root singularity (except for zero
Poisson's ratio) and, therefore, cannot be characterized by K (Benthem, 1977). Nevertheless,
the prediction of a linear variation of K across the crack front as in eqn (8) by shear­
deformation plate theories appears to be quite accurate for all practical purposes (Hui and



1660 C. H. Wang et al.

2.0 r;========;o-----.---..-...,--...,..---,
'i'- - .. Finite element
-- Murakami,1987

--------.>..---~
- 1/2K=<J (7ta)

1.0

0.5

g

~ 1.5
~

1.00.80.60.40.2
O'----'--"'-----'--...L.----O--'--'----'--""----J
o

Half crack length aIL

Fig. 3. Comparison between finite element solution and analytical solution for a centre-cracked
plate under tension.
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Fig. 4. Stress intensity factors vs crack length for two- and one-sided repairs. Symbols-three­
dimensional finite element results; dashed line-eqn (I); solid line-eqn (45).

Zehnder, 1993). It is also noted that from Fig. 5 there is a significant variation of K across
the thickness, contrary to a claim by Arendt and Sun (1994) that it is negligible.

5. ANALYTICAL APPROACH

In the following we will focus on the derivation of the upper bound for the stress
intensity factor, which corresponds to the limiting value for semi-infinite crack length. For
the sake of simplicity, we assume the structure is stress-free before an external load is
applied, although the analysis can be readily extended to include the effect of thermal
residual stress. By definition, the strain energy release rate, G = - c5Il;c5a, where II rep­
resents the potential energy of a cracked system. For a linear elastic structure, the strain
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Fig. 5. Distribution of stress intensity factor along crack front (R = 0.236).

energy release rate is equal to the change in total strain energy during a virtual crack
extension of unit length. Following the reasoning in Rose (1981), for a semi-infinite crack
the stress and displacement fields after a virtual crack extension of unit length are
unchanged, but shifted to the right by a unit distance, which in essence amounts to a vertical
strip of unit width with the cross-section depicted in Fig. I (d) being converted into one of
the same width, but with the cross-section shown in Fig. I (c). The energy gained by the
system during this virtual crack extension is denoted by bUE . From the theory of elasticity,
bUE is also equal to the work extracted by relaxing to zero the tractions, O"yy(x -> <Xl,y = 0, z),
through the displacement, uJx = O,y = O-+-,z) on the plate depicted in Fig. l(a). Provided
the strip shown in Fig. I (c) can support the applied stress, the displacement
uy(x = 0, y = 0+, z) in Fig. I(a) or (b) wilI be finite, so that bUE and Goc;, will also be finite.

Within the framework of a geometricalIy linear analysis, the strain energy release rate,
Gx can be determined by a two-stage approach as advocated by Rose (1981, 1982, 1988)
for two-sided repairs. First ofalI, the stress distribution in the un-cracked plate, O"yy(Y = 0, z)
depicted in Fig. I (d), is determined, and secondly, the displacement uy(Y = 0+, z) is obtained
for the representative bonded joint shown in Fig. I (c). In particular, the upper bound of
stress intensity factor can be determined as follows. A cut is introduced in the plate along
the line segment (y = 0, 0 ~ z ~ tp ) and the stress O"yy relaxed to zero, giving rise to a crack­
face displacement uy(y = 0, il. The work extracted during this process is the energy change
bUE required to calculate the strain energy release rate:

an I ioa irp

1Goc = - -2~ == -2~ 2 -2 O"yy(Y = 0, z) . 2u,(y = 0+, z) dz
tp oa tp ua 0 0

1irp

= - 0" ,,,(y = 0, z)ur(y = 0+ ,z) dz.
t·' .

P 0

(13)

5.1. Stage one: reinforcement of uncracked plate
In the folIowing analysis the height of the reinforcement is assumed to be far greater

than the shear stress transfer length, p-l, so that the influence of the outer edge of the
reinforcement can be neglected, and the overlap region can be treated as a composite plate
with a rigid bondline as in Goland and Reissner (1944). The equivalent membrane force,



z

1662 C. H. Wang et al.

neutral axis of
composite section
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(b)

Fig. 6. Stress distributions in an uncracked bonded reinforcement: (a) composite beam subjected
to asymmetric loading: (b) stress distribution in the plate.

N, and bending moment, M, acting on the composite plate (or beam) are, adopting usual
sign conventions:

(14)

(15)

where

(16)

where z and zp denote, respectively, the distance between the unbonded surface to the
neutral axes of the composite plate and the plate; see Fig. 6(a). The term !:it signifies the
shift of the neutral axis. From the composite beam theory [e.g. see Gere and Timoshenko
(1987)], the distance between neutral axis of the section and the lower surface plate is:

_ E~tpzp +E~tRZR

Z= E~tp+E~tR
(17)

where zp( = tpj2) and ZR( = tp+ tA + tRj2 ~ tp+ tRj2) denote, respectively, the distance
between the lower surface to the neutral axes of the plate and the reinforcement, as indicated
in Fig. 6(a). The total moment of inertial for the composite section under plane strain
conditions is :



where n = E~/E~, and
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(18)

(19)

(20)

With the conventional assumption of plane section remaining plane and normal to the
neutral axis (classical plate theory), the normal strain distribution in the plate is given by:

According to Hooke's law the normal stress in the plate O"yy(Y = 0, z) is thereby

(21)

(O<z<tp ). (22)

To facilitate the following analysis, it is convenient to express this stress distribution in
terms ofa membrane force Nt, and a bending moment, M~, as illustrated in Fig. 6(b),

(23)

and

(24)

Comparison between eqns (23) and (2) clearly shows that the plate in a one-sided repair is
transferring more stress than in an equivalent two-sided repair (or fully supported one­
sided repair). Therefore, due to the out-of-plane bending induced by load eccentricity, the
stress distribution along the prospective crack path before the crack appears is higher than
for a corresponding two-sided reinforcement. In addition, there is a bending moment acting
on the prospective crack faces. Consequently, due to the shift of neutral plane, one-sided
repairs would experience not only an increase in the net force that the plate is transmitting,
but also a secondary bending moment. It can, therefore, be expected that both the higher
membrane force and the additional bending moment will contribute to a higher energy
being released than in two-sided repairs, giving rise to a higher strain energy release rate

5.2. Stage two: deformation of the representative bondedjoint
Now that the stress distribution at the prospective crack location has been determined,

the crack face opening displacement is the only remaining unknown. The representative
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bonded joint to be considered is depicted in Fig. 7(a, b), with coordinates and notations.
A schematic drawing of the one-sided reinforcement after the introduction of a crack is
shown in Fig. 7(c), where the deflection of the plate and reinforcement are somewhat
exaggerated for gre:ater clarity. The deformed mesh from a geometrically linear finite
element analysis is shown in Fig. 7(d). For symmetry, only half of the joint is shown. The
bending moment acting on the reinforcement at the centre is

(25)

The governing equation for the shear stress 'A in the adhesive layer is, similar to single lap
joints (Goland and Reissner, 1944), with the relevant sign conventions being indicated in
Fig.7(b),

(26)

where f3s = 2f3 for s:ingle strap joints. Here f3- 1 is the shear stress transfer length for two­
sided reinforcement as given by eqn (4). For a semi-infinite overlap joint in the domain
(0 ~ y < (0), the relevant solution for the shear stress is

(27)

where 'A,max represents the maximum shear stress at y = O. The boundary condition for the
shear stress is :

therefore, the maximum adhesive shear strain is, noting eqn (25) and f3s = 2f3

[
N 6Mm J 1 (Jro ( 3 t p )

YAmax = - E~tR + E~t~ t
A

f3s = - SEpf3t
A

2+"2 tR .

(28)

(29)

It is noted that the term (Jro /SEpf3tA represents the maximum adhesive shear strain in
two-sided repair (Rose, 1988). Thus it is clear that one-sided repairs experience a much
higher adhesive shear strain, when compared with an equivalent two-sided repair (or a fully
supported one-sided repair). This increase in adhesive shear strain would result in larger
crack opening, hence higher stress intensity factors. The main factor leading to the higher
shear strain is the localised bending of the reinforcement resulting from load-path eccen­
tricity; this is represented by the second term in the bracket of the above equation.

Similarly the governing equation for the peel stress (JAin the adhesive layer is (Hart­
Smith, 1982):

(30)

where K is given by

(31)

where Dp and DR refer to the bending stiffness of the plate and reinforcement,
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Dp,R = E~,Rfh/12. The relevant solution for the peel stress in the case of a semi-infinite
overlap in the domain (0 ~ Y < (0) is:

(32)

where A and B are two unknown constants yet to be determined from boundary conditions
at Y = 0, which are,

d
2

0'A I = E'p, d
2
(wR -wp) = E'p, (MR(Y = 0) _ Mp(y = 0»)

dy 2 y=o fA dy 2 fA DR D p

(33a)

and

d
3
0'AI 0= E'p, d

3
(wR-wp) = E'p, (VR+1:A,maX fR/2 _ Vp+1:A,maxfp/2)

dy 3 y=o fA dy 3 fA DR D p

(33b)

where use has been made of the following boundary conditions: (i) VR at y = 0 is equal to
zero because of symmetry; (ii) at the free surface (y = 0) Vp and M p are both zero.

It is also easy to show the following relationships:

dO'A ) • ( ]dy = -K[(A+B SlllKY+ A-B)cOSKY e-Ky

Combining eqns (33a) an (34b), we have

similarly after combining eqns (33b) and (34c),

3 E'p,(6 6)2K (A+B) = - -- - -- 1:Amax,
fA E~f~ E~f~ ,

thus one finds that

so that, noting eqn (34a)

(34a)

(34b)

(34c)

(35)

(36)
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Let us denote the rotation of the plate at Y = 0 as ()o. Since GA = (WR - wp)/tA , we have

= M,"'!..- + (_3 3_)YA,max/lA
KD R E~t~ E~t~ K2

= 6a
co

tp(tp + tR ) [1- Q],
KE~t~

where the symmetry condition oWR/oYly=o = 0 has been used, and

f3 (tR/t p +3/4)(1- StR/tp )

Q = K(I+S) l+tR/tp
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(37)

(38)

(39)

In the case of identical reinforcement, i,e, the patch and the cracked plate have the same
moduli and thicknesses (S = 1 and tR = t p ), we have Q = 0, In general, Q is far less than
unity for typical repairs. For instance, Q = 0.08054 for the repair configuration discussed
in Section 3,

The plate displacement in the Y direction at coordinate z can be expressed as, referring
to Fig, 7(c) :

Uy(Y = 0+ ,z) = -YA,maxtA +()o(tp-z),

Thus, the displacement along the mid-plane of the cracked plate is:

(40)

(41)

which also represents the average displacement through the plate thickness, A comparison
between the theoretical prediction and the finite element results of a representative single
strap joint is shown in Fig. 8, demonstrating a reasonable agreement.

,-..,
S 0,0025S
'-'

>-
::I

:: 0.0020'0....,
~
t:l
'"0 0.0015co
.5
'"....
0

:: 0.0010
~
0
(,)
..s
'a 0.0005'";; 1_0_ =:2DFE·1bIlc:
'j:l
0

0P-
O 0 2 3 4

Coordinate z (mm.)

Fig. 8. Comparison between theory and finite element results for the representative single strap
joint.
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5.3. Strain energy release rate and stress intensity factors
As indicated earJIier, see eqn (13), the strain energy release rate G~ can be evaluated

as the work extracted (per unit thickness, per unit crack advance) on allowing the stage
one stress O'yy(Y = 0, z) given by eqn (22) to relax to zero through the displacement
u/y = O+,z) in eqn (40). It can be easily shown that the strain energy release rate can be
written alternatively in terms of the membrane force and the bending moment:

Here the superscript "*,, refers to one-sided repair. Therefore,

(O'OCJ) 2

G* - 2
OCJ - (1 +S)S/3EpW ,

where w signifies a bending correction factor and is given by

/3 ( tp
) tp tJ.t t~ (32 )+ (1 - Q) (1 +S) - I + - - - - - - I .

K tR tR tp It tp

(42)

(43)

(44)

Here the bending correction factor w represents the bending effect due to the shift of neutral
axis in the case of one-sided repair. Referring to eqn (10), the root-mean-square stress
intensity factor for one-sided reinforcement can be expressed as:

(45)

where KOCJ denotes the: asymptotic stress intensity factor for two-sided repair. The calculated
asymptotic values for K~,rms are shown in Fig, 9, together with the finite element results,

- - Theory: asymptotic value
9- - '9 FEA: Arendt and Sun

0.5 G - - EI Present work 3D F,E.

0.4

0.3

0.2

0.1

50 100

Q~

K,
mm

150

Half crack length a (mm)
Fig. 9. Comparison between analytical solution and finite element results for one-sided reinforce­
ment. Symbols-three-dimensional finite element results; dashed lines-theoretical predictions of

upper bound.
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confirming that the analytical solution is truly an upper bound and, therefore, provides a
conservative estimate of for design purposes.

Although the root-mean··square of the stress intensity factor has been derived, the
maximum and minimum stress intensity factors, which are related through eqn (12), stil1
remain unresolved. An additional equation is required to partition the total strain energy
release rate into membrane and bending components. A related study (Wang and Rose,
1997b) has shown that the energy method alone is insufficient to determine the membrane
and bending stress intensity factors. However, it is not unreasonable to assume that the
ratio between the minimum and maximum stress intensity factor is independent of crack
length, which can, therefore, be readily evaluated in the short crack limit, a ~ O. In this
case, the membrane and bending stress intensity factors are linearly related to the membrane
and bending stresses which would prevail in a patched, but uncracked, plate. It is interesting
to note that, for a cracked plate subjected to bending and in-plane extension, both the
Kirchhoff plate theory and Reissner's shear deformation theory would yield the same
solution in the short crack limit (Sih, 1971), i.e. Km = O'm~ and Kb = O'b~' Here Km
and K b represent, respectively, the membrane and bending stress intensity factors, and O'n

and O'b are the membrane and maximum bending stresses. Based on the afore-mentioned
hypothesis, the ratio between the minimum and the maximum stress intensity factors can
be expressed as, noting equation (22)

(46)

Together with eqn (12), the maximum and minimum stress intensity factors can now
be determined, where K~,rms is given by eqn (45). The respective formulae for the minimum
and maximum stress intensity factors are given below for completeness,

and

(
3 )1 /2

'C* - K*
'Xi,max - 1 +R +R2 "',rms

(
3 )1 /2

K~ min = RK~ rms'
, 1+R+R 2 •

(47)

(48)

The calculated asymptotic values for K~.max and K~,min are also depicted in Fig. 9, together
with the finite element results. To demonstrate the validity of the hypothesis, the finite
element results for K~,rms and K~,max are plotted in Fig. lO(a). Also plotted in the figure are
the results reported by Jones (1983). The stress ratios R determined from eqn (46) is equal
to 0,236 for the repair configuration considered in Section 4. As shown in Fig. lO(a), there
is a good correlation between the finite element results and eqn (47), represented by the
solid line. Furthermore, the ratios between K~.rms and K~,max for various crack lengths are
presented in Fig. lOeb), confirming the above hypothesis that the membrane to bending
stress intensity factor ratio is independent of crack length. It should be noted that the
problem can be analysed more rigorously using a line spring method (Wang and Rose,
1997c),

It is now possible to defme a spring constant for one-sided repairs so that the stress
intensity factors can be expressed in a similar form as in two-sided repairs,

k* = ( O';*ms )2
KXJ,rms

(49)

where O':;"s = [(O't)2 +0'~/W/2, representing the root-mean-square of the prospective stress
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Fig. 10(a) Correlation between the maximum stress intensity factor Kt, rna, and the root-mean­
square stress intensity factor Kt,.,rn,; (b) ratio of K~,om,/K~.rnaxvs crack length.

distribution across the crack front. Here CT~ and CTb are, respectively, given by eqns (23) and
(24).

5.4. Interpolation between short and long crack limits
Having obtained the asymptotic behaviour of the stress intensity factors in the long

crack (a -> 00) limit, it would be useful for engineering application to construct an interp­
olation formula for intermediate crack lengths. Here, let us adopt the interpolating formula
for two-sided repairs (Rose, 1982; Wang and Rose, 1997a), which has been shown to agree
well with exact, numerical solutions of integral equations. The mean stress intensity factor
can be expressed as :



where
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(50)

(51 )

where constant A (equal to 0.3 for 8 = I and equal to 0.1 for 8 ..... (0) was determined by
fitting the exact solutions of the integral equation representing two-sided repairs (Wang
and Rose, 1997a). Using eqns (47) and (48), the maximum and minimum stress intensity
factors can be readily evaluated.

6. PARAMETRIC STUDIES

For both the symmetric and asymmetric bonded reinforcements, the asymptotic stress
intensity factors are dependent on a large number of parameters pertaining to the three
constituents. For a given cracked plate, there are at least four main variables affecting the
limiting stress intensity factor: the Young's moduli and thickness of the patch and the
adhesive layer. However, the stress intensity factor for symmetric reinforcement can be
rewritten as:

(52)

where l' = E~tAIJ1Atp. This formula shows clearly two important non-dimensional
parameters, which are: (i) the stiffness ratio, 8; (ii) the flexibility ratio, F. For most practical
repairs, the flexibility ratio F is typically of the order of unity, e.g. l' = 6.7 for the repair
geometry shown in Table 1, while 8 is designed to be close to unity.

In the case of one-sided reinforcement, a similar parametric analysis is much more
complicated. Nevertheless, after normalization (see Appendix A), the bending correction
factor ill can be shown to depend on three non-dimensional parameters plus the Poisson's
ratio of the adhesive layer, i.e.

w = w(l', 8, T, VA) (53)

where T = tpltR •

A non-dimensional plot of the bending correction factor for the balance repair con­
figuration, i.e. 8 = 1.0, is shown in Fig. l1(a), demonstrating a monotonic decline as the
thickness of the reinforcement increases, irrespective of the flexibility ratio l'. Therefore,
thicker reinforcements are beneficial in reducing the effect of out-of-plane bending. Up
until now, bonded patches have been designed to balance the stiffness (Baker and Jones,
1988), i.e. the extensional stiffness of the reinforcement is the same as that of the plate
(8 = 1.0). Such designs, however, appear to be chosen for convenience rather than based
on any theoretical considerations. From the present analysis, it is clear that by selecting
patches having the same thickness or even greater thickness than the cracked plate, sig­
nificant reduction in the bending effect can be achieved.

From Fig. 11 (a), it is clear that in the case of unidirectional boron composite patches,
a reduction of more than 50% in the bending effect can be obtained by employing a
reinforcement with a thickm:ss ratio greater unity. This, in practice, can be easily achieved
by adopting crossply laminates to increase the thickness while maintaining the overall
extensional stiffness. Natural1y, there are other considerations concerning the design of a
reinforcement patch, not least of which is the ultimate strength of a patch. In this regard,
since there is a localized stress concentration in the reinforcement over the crack region due
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Fig. 11. Influence of reinforcement thickness on bending correction factor for: (a) balanced
reinforcement (S = 1.0); (b) fixed modulus ratio Ep = ER ; (c) fixed modulus ratio ER = 3Ep .

to localized bending, a thicker reinforcement would have an additional benefit of reducing
the stress concentration, thus enhancing the patch strength.

The thickness influences for other modulus ratios are presented in Fig. II (b, c) for
ERIEp equal to 1 and 3, respectively. It is clear that for identical modulus, any further
increase in the thickness ratio beyond unity does not seem to reduce out-of-plane bending
effect any further, as evidenced in Fig. II(b). Instead, a steady decrease in the bending
effect can be observed for the case ERIEp = 3, see Fig. l1(c). It should be noted, however,
that the absolute values of the stress intensity factor would decrease quite significantly as
the thickness ratio increases, as shown in Fig. 12, because the stiffness ratio S plays an
important role in reducing the stress intensity factor for two-sided reinforcement. Figure
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Fig. 12. Variation of the streSi> intensity factor for one-sided reinforcement with respect to thickness
ratio.

12 clearly demonstrates the dramatic reduction in the stress intensity factor if thicker
reinforcements are used. Therefore, it can be concluded that the most effective method in
reducing the out-of-plane bending is to employ reinforcement of the maximum allowable
thickness.

7. CONCLUSIONS

Based on the preceding theoretical and finite element studies, the following conclusions
can be drawn from the present work:

(1) Due to the out-of-plane bending induced by load-path eccentricity, the stress dis­
tribution along the prospective crack path before the crack appears is higher than in
the case of two-sided reinforcement.
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(2) Localized bending of the reinforcement in an unsupported one-sided repair would
induce a significant increase in the stress intensity factor, hence reducing the repair
efficiency.

(3) The stress intensity factor (maximum, minimum or root-mean-square) approaches, but
never exceeds, a limiting value with increasing crack length for the case of one-sided
repair.

(4) An explicit analytical solution has been obtained for the asymptotic value of the root­
mean-square of the stress intensity factor along the crack front. This estimate has been
shown to agree well with finite element results and provide a conservative prediction
suitable for design purposes.

(5) The variation of the stress intensity factor along the crack front is found to be approxi­
mately independent of the crack length, hence can be estimated based on the stress
variation which would prevail in a patched, but uncracked, plate.

(6) Parametric studies have shown that the most effective method to reduce the out-of­
plane bending efl'ect is to employ thicker reinforcement.
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APPENDIX I

Parametric study
For one-sided repair, the centroid of the composite section is:

- _ Eptpzp+ERtRZR _ Zp+SZR _ r (S T)z - - - tplt , ,
Eptp+ERtR I+S

where

(AI)
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II (S, n = (1 +2S+S*) /2(1 +S).

The moment of inertia for each individual layer is

for the plate and

IR = I~ (2- + ~ (1- --,-tP_+_t~R/_2_-_t)2)
12 4 tR

= !J (2- + ~ (1- ~_~ +~ I+2S+2tR/tP)2)
R 12 4 tR 2 t R 1+ S
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(A2)

(A3)

(A4)

for the reinforcement. Let us define T = tR/tp. The moment of inertia of the composite section can be written as,
noting n = SIT:

Similarly the parameter Q can be expressed as :

f3 1+ 3tp /4t R
Q=-(1S) 1 I (l-TS) = Q(F,S,T,vA )·

K + +tp tR

Therefore, the bending correction fa.ctor is a function of four independent parameters:

w = w(F, S, T, VA)'

(AS)

(A6)

(A7)

(A8)


